3.2.11 \(\int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^4} \, dx\) [111]

Optimal. Leaf size=146 \[ -\frac {(A-B) \sec ^3(c+d x) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {(4 A+3 B) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}-\frac {8 (4 A+3 B) \tan (c+d x)}{105 d \left (a^2+a^2 \sec (c+d x)\right )^2}+\frac {(4 A+3 B) \tan (c+d x)}{15 d \left (a^4+a^4 \sec (c+d x)\right )} \]

[Out]

-1/7*(A-B)*sec(d*x+c)^3*tan(d*x+c)/d/(a+a*sec(d*x+c))^4+1/35*(4*A+3*B)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^3-8/105
*(4*A+3*B)*tan(d*x+c)/d/(a^2+a^2*sec(d*x+c))^2+1/15*(4*A+3*B)*tan(d*x+c)/d/(a^4+a^4*sec(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {4097, 3884, 4085, 3879} \begin {gather*} \frac {(4 A+3 B) \tan (c+d x)}{15 d \left (a^4 \sec (c+d x)+a^4\right )}-\frac {8 (4 A+3 B) \tan (c+d x)}{105 d \left (a^2 \sec (c+d x)+a^2\right )^2}-\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{7 d (a \sec (c+d x)+a)^4}+\frac {(4 A+3 B) \tan (c+d x)}{35 a d (a \sec (c+d x)+a)^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^3*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^4,x]

[Out]

-1/7*((A - B)*Sec[c + d*x]^3*Tan[c + d*x])/(d*(a + a*Sec[c + d*x])^4) + ((4*A + 3*B)*Tan[c + d*x])/(35*a*d*(a
+ a*Sec[c + d*x])^3) - (8*(4*A + 3*B)*Tan[c + d*x])/(105*d*(a^2 + a^2*Sec[c + d*x])^2) + ((4*A + 3*B)*Tan[c +
d*x])/(15*d*(a^4 + a^4*Sec[c + d*x]))

Rule 3879

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[-Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3884

Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*Cot[e + f*x]*((
a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] - Dist[1/(a^2*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m
+ 1)*(a*m - b*(2*m + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)
]

Rule 4085

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(A*b - a*B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(a*B*m + A*b*
(m + 1))/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f}, x
] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]

Rule 4097

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] + Dist[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])
^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0
] && LeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^4} \, dx &=-\frac {(A-B) \sec ^3(c+d x) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {(4 A+3 B) \int \frac {\sec ^3(c+d x)}{(a+a \sec (c+d x))^3} \, dx}{7 a}\\ &=-\frac {(A-B) \sec ^3(c+d x) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {(4 A+3 B) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac {(4 A+3 B) \int \frac {\sec (c+d x) (-3 a+5 a \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx}{35 a^3}\\ &=-\frac {(A-B) \sec ^3(c+d x) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {(4 A+3 B) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}-\frac {8 (4 A+3 B) \tan (c+d x)}{105 d \left (a^2+a^2 \sec (c+d x)\right )^2}+\frac {(4 A+3 B) \int \frac {\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{15 a^3}\\ &=-\frac {(A-B) \sec ^3(c+d x) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac {(4 A+3 B) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}-\frac {8 (4 A+3 B) \tan (c+d x)}{105 d \left (a^2+a^2 \sec (c+d x)\right )^2}+\frac {(4 A+3 B) \tan (c+d x)}{15 d \left (a^4+a^4 \sec (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.37, size = 109, normalized size = 0.75 \begin {gather*} \frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \left (35 (2 A+3 B) \sin \left (\frac {d x}{2}\right )-70 A \sin \left (c+\frac {d x}{2}\right )+(4 A+3 B) \left (21 \sin \left (c+\frac {3 d x}{2}\right )+7 \sin \left (2 c+\frac {5 d x}{2}\right )+\sin \left (3 c+\frac {7 d x}{2}\right )\right )\right )}{210 a^4 d (1+\cos (c+d x))^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^3*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^4,x]

[Out]

(Cos[(c + d*x)/2]*Sec[c/2]*(35*(2*A + 3*B)*Sin[(d*x)/2] - 70*A*Sin[c + (d*x)/2] + (4*A + 3*B)*(21*Sin[c + (3*d
*x)/2] + 7*Sin[2*c + (5*d*x)/2] + Sin[3*c + (7*d*x)/2])))/(210*a^4*d*(1 + Cos[c + d*x])^4)

________________________________________________________________________________________

Maple [A]
time = 0.26, size = 88, normalized size = 0.60

method result size
derivativedivides \(\frac {\frac {\left (-A +B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\frac {\left (-A +3 B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+\frac {\left (A +3 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d \,a^{4}}\) \(88\)
default \(\frac {\frac {\left (-A +B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\frac {\left (-A +3 B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+\frac {\left (A +3 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d \,a^{4}}\) \(88\)
risch \(\frac {4 i \left (70 A \,{\mathrm e}^{4 i \left (d x +c \right )}+70 A \,{\mathrm e}^{3 i \left (d x +c \right )}+105 B \,{\mathrm e}^{3 i \left (d x +c \right )}+84 A \,{\mathrm e}^{2 i \left (d x +c \right )}+63 B \,{\mathrm e}^{2 i \left (d x +c \right )}+28 \,{\mathrm e}^{i \left (d x +c \right )} A +21 B \,{\mathrm e}^{i \left (d x +c \right )}+4 A +3 B \right )}{105 d \,a^{4} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{7}}\) \(114\)
norman \(\frac {-\frac {\left (A -B \right ) \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{56 a d}-\frac {\left (A +B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}-\frac {3 \left (3 A +B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{40 a d}+\frac {\left (4 A +3 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 a d}-\frac {\left (4 A +3 B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{70 a d}+\frac {\left (4 A +3 B \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{140 a d}+\frac {\left (53 A -39 B \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{840 a d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} a^{3}}\) \(193\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

1/8/d/a^4*(1/7*(-A+B)*tan(1/2*d*x+1/2*c)^7+1/5*(-A+3*B)*tan(1/2*d*x+1/2*c)^5+1/3*(A+3*B)*tan(1/2*d*x+1/2*c)^3+
A*tan(1/2*d*x+1/2*c)+B*tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 175, normalized size = 1.20 \begin {gather*} \frac {\frac {A {\left (\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {15 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}} + \frac {3 \, B {\left (\frac {35 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {5 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}}}{840 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^4,x, algorithm="maxima")

[Out]

1/840*(A*(105*sin(d*x + c)/(cos(d*x + c) + 1) + 35*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 21*sin(d*x + c)^5/(co
s(d*x + c) + 1)^5 - 15*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4 + 3*B*(35*sin(d*x + c)/(cos(d*x + c) + 1) + 35
*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 21*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 5*sin(d*x + c)^7/(cos(d*x + c)
 + 1)^7)/a^4)/d

________________________________________________________________________________________

Fricas [A]
time = 3.32, size = 125, normalized size = 0.86 \begin {gather*} \frac {{\left (2 \, {\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{3} + 8 \, {\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + 13 \, {\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right ) + 13 \, A + 36 \, B\right )} \sin \left (d x + c\right )}{105 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^4,x, algorithm="fricas")

[Out]

1/105*(2*(4*A + 3*B)*cos(d*x + c)^3 + 8*(4*A + 3*B)*cos(d*x + c)^2 + 13*(4*A + 3*B)*cos(d*x + c) + 13*A + 36*B
)*sin(d*x + c)/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 4*a^4*d*cos(d*x + c)
+ a^4*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {A \sec ^{3}{\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sec ^{4}{\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec {\left (c + d x \right )} + 1}\, dx}{a^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**4,x)

[Out]

(Integral(A*sec(c + d*x)**3/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + d*x)**2 + 4*sec(c + d*x) + 1), x)
 + Integral(B*sec(c + d*x)**4/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + d*x)**2 + 4*sec(c + d*x) + 1),
x))/a**4

________________________________________________________________________________________

Giac [A]
time = 0.47, size = 117, normalized size = 0.80 \begin {gather*} -\frac {15 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 15 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 21 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 63 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 35 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 105 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 105 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 105 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{840 \, a^{4} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^4,x, algorithm="giac")

[Out]

-1/840*(15*A*tan(1/2*d*x + 1/2*c)^7 - 15*B*tan(1/2*d*x + 1/2*c)^7 + 21*A*tan(1/2*d*x + 1/2*c)^5 - 63*B*tan(1/2
*d*x + 1/2*c)^5 - 35*A*tan(1/2*d*x + 1/2*c)^3 - 105*B*tan(1/2*d*x + 1/2*c)^3 - 105*A*tan(1/2*d*x + 1/2*c) - 10
5*B*tan(1/2*d*x + 1/2*c))/(a^4*d)

________________________________________________________________________________________

Mupad [B]
time = 2.03, size = 85, normalized size = 0.58 \begin {gather*} \frac {\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (A+3\,B\right )}{24\,a^4}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (A-3\,B\right )}{40\,a^4}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,\left (A-B\right )}{56\,a^4}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (A+B\right )}{8\,a^4}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))/(cos(c + d*x)^3*(a + a/cos(c + d*x))^4),x)

[Out]

((tan(c/2 + (d*x)/2)^3*(A + 3*B))/(24*a^4) - (tan(c/2 + (d*x)/2)^5*(A - 3*B))/(40*a^4) - (tan(c/2 + (d*x)/2)^7
*(A - B))/(56*a^4) + (tan(c/2 + (d*x)/2)*(A + B))/(8*a^4))/d

________________________________________________________________________________________